Original Article
Prognostic imaging of iatrogenic and traumatic ureteral injury by near-infrared fluorescence
Abstract
Background: Iatrogenic or traumatic ureteral injuries are life-threatening but difficult to diagnose early. Ureteral visualization is essential for both the prevention and diagnosis of iatrogenic or traumatic ureter injuries. In the present study, we evaluated the feasibility of near-infrared (NIR) with ZW800-1C as a diagnostic tool of iatrogenic or traumatic ureteral injury in addition to ureter visualization, compared to methylene blue.
Methods: With mice model, we compared the image quality of ZW800-1C with methylene blue for ureter visualization. We also made ureter perforation, obstruction, crushing injury, and transection model with mice and evaluated the feasibility of ZW800-1C for diagnostic tool for ureteral injuries.
Results: We could confirm the ureter in the ZW800-1C images in maximally 30 minutes after injection, and the ureter was visible until NIR imaging concluded at 180 minutes after injection. However, methylene blue failed to provide clear ureter imaging during the same period. ZW800-1C imaging successfully visualized ureters subjected to obstruction, transection, perforation, and crush injuries, although urinary leakage was not visible by eye.
Conclusions: Our results indicate ZW800-1C is better suited for ureter visualization than methylene blue and that ZW800-1C has considerable potential for the early diagnosis of various ureteral injuries.
Methods: With mice model, we compared the image quality of ZW800-1C with methylene blue for ureter visualization. We also made ureter perforation, obstruction, crushing injury, and transection model with mice and evaluated the feasibility of ZW800-1C for diagnostic tool for ureteral injuries.
Results: We could confirm the ureter in the ZW800-1C images in maximally 30 minutes after injection, and the ureter was visible until NIR imaging concluded at 180 minutes after injection. However, methylene blue failed to provide clear ureter imaging during the same period. ZW800-1C imaging successfully visualized ureters subjected to obstruction, transection, perforation, and crush injuries, although urinary leakage was not visible by eye.
Conclusions: Our results indicate ZW800-1C is better suited for ureter visualization than methylene blue and that ZW800-1C has considerable potential for the early diagnosis of various ureteral injuries.