Review Article

Biomineralized hybrid nanoparticles for imaging and therapy of cancers

Kyung Hyun Min, Hong Jae Lee, Sang Cheon Lee, Kyeongsoon Park


In this review, we describe the research trends of hybrid nanocarriers developed based on a biomimetic mineralization process, and their recent applications in imaging and therapy of cancers. Organic-inorganic hybrid nanostructures formed by diverse biomimetic mineralization approaches are briefly reviewed, and particularly, the biomedical applications of these hybrid nanocarriers for the diagnosis and therapy of cancers are discussed. Biomineralization is an important process in which living organisms produce biominerals, such as calcium phosphate (CaP), calcium carbonate (CaCO3), and silica (SiO2), to strengthen their tissues, as found in the formation of bone and teeth. Introducing the artificial biomimetic mineralization process to nanobiotechnology has inspired researchers to develop smart stimuli-responsive nanoparticles for multiple purposes, such as improved therapeutic activity and activatable imaging of cancers.

Download Citation