Original Article
Lumbar intervertebral discs T2 relaxometry and T1ρ relaxometry correlation with age in asymptomatic young adults
Abstract
Background: To investigate the detection of intervertebral disc (IVD) composition aging-related changes using T2 and T1ρ relaxometry in vivo in asymptomatic young adults.
Methods: We recruited ninety asymptomatic and young adults (42 men and 48 women) between 20 and
40 years old. T2 and T1ρ lumbar spine mappings were acquired using 1.5 T magnetic resonance imaging (MRI) scanner. Two independent observers manually segmented 450 lumbar discs in all slices. They also performed sub region segmentation of annulus fibrosus (AF) and nucleus pulposus (NP) at the central MRI sagittal slices.
Results: There was no difference between men and women for T2 (P=0.37) or T1ρ relaxometry (P=0.97). There was a negative correlation between age (20–40 years) and IVD T2 relaxation time of the whole disc (r=−0.30, P<0.0001), NP (r=−0.20 to −0.51, P<0.05) and posterior AF (r=−0.21 to −0.31, P<0.05) at all lumbar disc levels. There was no statistical correlation between aging and IVD T1ρ relaxation both for NP and AF.
Conclusions: T2 relaxometry detected gradual IVD dehydration in the first two decades of adulthood. We observed no significant variation of T1ρ or volumetry with aging in our study group. Our results suggest that T2 mapping may be more appropriate to detect early IVD aging changes.
Methods: We recruited ninety asymptomatic and young adults (42 men and 48 women) between 20 and
40 years old. T2 and T1ρ lumbar spine mappings were acquired using 1.5 T magnetic resonance imaging (MRI) scanner. Two independent observers manually segmented 450 lumbar discs in all slices. They also performed sub region segmentation of annulus fibrosus (AF) and nucleus pulposus (NP) at the central MRI sagittal slices.
Results: There was no difference between men and women for T2 (P=0.37) or T1ρ relaxometry (P=0.97). There was a negative correlation between age (20–40 years) and IVD T2 relaxation time of the whole disc (r=−0.30, P<0.0001), NP (r=−0.20 to −0.51, P<0.05) and posterior AF (r=−0.21 to −0.31, P<0.05) at all lumbar disc levels. There was no statistical correlation between aging and IVD T1ρ relaxation both for NP and AF.
Conclusions: T2 relaxometry detected gradual IVD dehydration in the first two decades of adulthood. We observed no significant variation of T1ρ or volumetry with aging in our study group. Our results suggest that T2 mapping may be more appropriate to detect early IVD aging changes.