Original Article
Quantitative radiology: automated measurement of polyp volume in computed tomography colonography using Hessian matrix-based shape extraction and volume growing
Abstract
Background: Current measurement of the single longest dimension of a polyp is subjective and has variations among radiologists. Our purpose was to develop a computerized measurement of polyp volume in computed tomography colonography (CTC).
Methods: We developed a 3D automated scheme for measuring polyp volume at CTC. Our scheme consisted of segmentation of colon wall to confine polyp segmentation to the colon wall, extraction of a highly polyp-like seed region based on the Hessian matrix, a 3D volume growing technique under the minimum surface expansion criterion for segmentation of polyps, and sub-voxel refinement and surface smoothing for obtaining a smooth polyp surface. Our database consisted of 30 polyp views (15 polyps) in CTC scans from 13 patients. Each patient was scanned in the supine and prone positions. Polyp sizes measured in optical colonoscopy (OC) ranged from 6-18 mm with a mean of 10 mm. A radiologist outlined polyps in each slice and calculated volumes by summation of volumes in each slice. The measurement study was repeated 3 times at least 1 week apart for minimizing a memory effect bias. We used the mean volume of the three studies as “gold standard”.
Results: Our measurement scheme yielded a mean polyp volume of 0.38 cc (range, 0.15-1.24 cc), whereas a mean “gold standard” manual volume was 0.40 cc (range, 0.15-1.08 cc). The “gold-standard” manual and computer volumetric reached excellent agreement (intra-class correlation coefficient =0.80), with no statistically significant difference [P (F≤f) =0.42].
Conclusions: We developed an automated scheme for measuring polyp volume at CTC based on Hessian matrix-based shape extraction and volume growing. Polyp volumes obtained by our automated scheme agreed excellently with “gold standard” manual volumes. Our fully automated scheme can efficiently provide accurate polyp volumes for radiologists; thus, it would help radiologists improve the accuracy and efficiency of polyp volume measurements in CTC.
Methods: We developed a 3D automated scheme for measuring polyp volume at CTC. Our scheme consisted of segmentation of colon wall to confine polyp segmentation to the colon wall, extraction of a highly polyp-like seed region based on the Hessian matrix, a 3D volume growing technique under the minimum surface expansion criterion for segmentation of polyps, and sub-voxel refinement and surface smoothing for obtaining a smooth polyp surface. Our database consisted of 30 polyp views (15 polyps) in CTC scans from 13 patients. Each patient was scanned in the supine and prone positions. Polyp sizes measured in optical colonoscopy (OC) ranged from 6-18 mm with a mean of 10 mm. A radiologist outlined polyps in each slice and calculated volumes by summation of volumes in each slice. The measurement study was repeated 3 times at least 1 week apart for minimizing a memory effect bias. We used the mean volume of the three studies as “gold standard”.
Results: Our measurement scheme yielded a mean polyp volume of 0.38 cc (range, 0.15-1.24 cc), whereas a mean “gold standard” manual volume was 0.40 cc (range, 0.15-1.08 cc). The “gold-standard” manual and computer volumetric reached excellent agreement (intra-class correlation coefficient =0.80), with no statistically significant difference [P (F≤f) =0.42].
Conclusions: We developed an automated scheme for measuring polyp volume at CTC based on Hessian matrix-based shape extraction and volume growing. Polyp volumes obtained by our automated scheme agreed excellently with “gold standard” manual volumes. Our fully automated scheme can efficiently provide accurate polyp volumes for radiologists; thus, it would help radiologists improve the accuracy and efficiency of polyp volume measurements in CTC.