Original Article
Prognostic value of pre-treatment CT texture analysis in combination with change in size of the primary tumor in response to induction chemotherapy for HPV-positive oropharyngeal squamous cell carcinoma
Abstract
Background: To determine the additive value of quantitative radiomic texture features in predicting progression in human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC) based on pre-treatment CT.
Methods: Retrospective analysis of a single-center cohort of adult patients enrolled in a response-adapted radiation volume de-escalation trial treated with induction chemotherapy. Texture analysis of HPV-positive OPSCC was performed via primary tumor site contouring on pre-treatment contrast-enhanced CT scans. Percent change in size of the tumor in response to induction chemotherapy based on RECIST 1.1 criteria and progression free survival were clinically determined for this cohort. Receiver operating characteristic (ROC) analysis was performed to compare the accuracy of percent change in tumor size after induction chemotherapy with a combination of change in tumor size and radiomic texture features for predicting tumor progression.
Results: Radiomic texture analysis of the primary tumors in 38 patients with OPSCC depicted on pre-treatment neck CT scans using skewness and entropy in combination with percent change in tumor size after induction chemotherapy yielded a statistically significant increase in accuracy for predicting tumor progression over change in tumor size alone, with an area under the curve of 0.80 versus 0.56 (one-tailed P=0.0087).
Conclusions: This pilot study suggests that disease progression in patients with HPV-positive OPSCC is more accurately predicted using a combination of texture features on pre-treatment CT scans, along with change in tumor size compared to change in tumor size alone and could therefore serve as a radiomic texture signature.
Methods: Retrospective analysis of a single-center cohort of adult patients enrolled in a response-adapted radiation volume de-escalation trial treated with induction chemotherapy. Texture analysis of HPV-positive OPSCC was performed via primary tumor site contouring on pre-treatment contrast-enhanced CT scans. Percent change in size of the tumor in response to induction chemotherapy based on RECIST 1.1 criteria and progression free survival were clinically determined for this cohort. Receiver operating characteristic (ROC) analysis was performed to compare the accuracy of percent change in tumor size after induction chemotherapy with a combination of change in tumor size and radiomic texture features for predicting tumor progression.
Results: Radiomic texture analysis of the primary tumors in 38 patients with OPSCC depicted on pre-treatment neck CT scans using skewness and entropy in combination with percent change in tumor size after induction chemotherapy yielded a statistically significant increase in accuracy for predicting tumor progression over change in tumor size alone, with an area under the curve of 0.80 versus 0.56 (one-tailed P=0.0087).
Conclusions: This pilot study suggests that disease progression in patients with HPV-positive OPSCC is more accurately predicted using a combination of texture features on pre-treatment CT scans, along with change in tumor size compared to change in tumor size alone and could therefore serve as a radiomic texture signature.